\(v _{ x }= u _{ x }+ gt\)
\(v _{ x }= u \cos \theta+0 \times 1\)
\(v _{ x }=30 \cos 30^{\circ}\)
\(v _{ x }=15\sqrt3\; m / s\)
Vertical component of the velocity along \(y\)-axis after \(1 s\) is
\(v _{ y }= u _{ y }- gt\)
\(v _{ y }=30 \sin 30^{\circ}-10 \times 1\)
\(v _{ y }=15-10\)
\(v _{ y }=5 m / s\)
Velocity of a body after 1 s is
\(\overrightarrow{ v }= v _{ x } \hat{ i }+ v _{ y } \hat{ j }\)
\(\overrightarrow{ v }=15\sqrt3 \hat{ i }+5 \hat{ j }\)
Magnitude, \(v =|\overrightarrow{ v }|=\sqrt{(15\sqrt3)^{2}+(5)^{2}}\)
\(v =\sqrt{700}\)
\(v =10 \sqrt{7}\; m / s\)
$(g \,= \,10 m/s^2, \,sin \,30^o \,= \,\frac{1}{2}$, $\cos \,{30^o}\, = \,\frac{{\sqrt 3 }}{2}$)