${K_h} = \frac{{{K_w}}}{{{K_b}}}\,\,$ તો $ {{\text{K}}_{\text{b}}} = \frac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{h}}}}}{\text{ }}$
${\text{(1)}}\,{{\text{M}}_{\text{1}}}{\text{x}} = {{\text{K}}_{\text{b}}} = \frac{{{\text{1}}{{\text{0}}^{{\text{ - 14}}}}}}{{{{10}^{ - 7}}}}{\text{ }} = {\text{1}}{{\text{0}}^{{\text{ - 7}}}}\,\,;\,\,\,(2)\,\,{M_2}x = {K_b} = \frac{{{{10}^{ - 14}}}}{{{{10}^{ - 4}}}} = {10^{ - 10}};$
$\,\,\,(3)\,{M_3}x = {K_b} = {10^{ - 4}}$
જેથી $, {{\text{M}}_{\text{3}}}OH\, > \,{M_1}OH\, > {M_2}OH$