\(t = 1y\) \( N_1 = N_0e^{-\lambda(1)}\)
\(t = 2y\) \( N_2 =N_0e^{-\lambda(2)}\)
\(t = 3y\) \( N_3 = N_0e^{\lambda(3)}\)
\(\frac{{{N_2} - {N_3}}}{{{N_1} - {N_2}}} = 0.3\,\,\,\)
\( \Rightarrow \frac{{{N_0}{e^{ - 2\lambda }} - {N_0}{e^{ - 3\lambda }}}}{{{N_0}{e^{ - \lambda }} - {N_0}{e^{ - 2\lambda }}}} = 0.3\)
\(\frac{{{N_0}{e^{ - 2\lambda }}(1 - {e^{ - \lambda }})}}{{{N_0}{e^{ - \lambda }}(1 - {e^{ - \lambda }})}} = 0.3\)
\(e^{-\lambda} = 0.3 \)
\(\therefore N_0 - N_1 = ?\)
\(= N_0 - N_0e^{-\lambda} = N_0(1 - e^{-\lambda})\)
\(= 10^{20} (1 - 0.3) = 0.7 \times 10^{20} = 7 \times 10^{19}\)