$K(x) = K_0 + \lambda x$ ($\lambda =$ અચળાંક)
શૂન્યાવકાશમાં કેપેસીટરનું મૂલ્ય $C_0$ હોય તો $C_0$ના સ્વરૂપમાં કેપેસીટન્સ $C$ કેટલું મળે?
\(\mathrm{K}=\mathrm{K}_{0}+\lambda \mathrm{x}\)
And, \(\mathrm{V}=\int_{0}^{\mathrm{d}} \mathrm{Edr}\)
\(\mathrm{v}=\int_{0}^{\mathrm{d}} \frac{\sigma}{\mathrm{K}} \mathrm{dx}\)
\({=\sigma \int_{0}^{d} \frac{1}{\left(K_{0}+\lambda x\right.} d x}\)
\({=\frac{\sigma}{\lambda}\left[\ln \left(K_{0}+\lambda d-\ln K_{0}\right]\right.}\)
\({=\frac{\sigma}{\lambda} \ln \left(1+\frac{\lambda d}{K_{0}}\right)}\)
Now it is given that capacitance of vacuum \(=1\)
Thus, \(C=\frac{Q}{V}\)
\(=\frac{\sigma . s}{v}\) (Let surface area of plates \(=\) \(s\))
\(=\frac{\sigma}{\lambda} \ln \left(1+\frac{\lambda \mathrm{d}}{\mathrm{K}_{0}}\right)\)
\( = \operatorname{s} \,\lambda \,\frac{d}{d}\frac{1}{{\ln \left( {1 + \frac{{\lambda d}}{{{K_0}}}} \right)}}\left( {\because {\text{ in vacuum }}{\varepsilon _0} = } \right.\)
\(c=\frac{\lambda d}{\ln \left(1+\frac{\lambda d}{K_{0}}\right)} \cdot C_{0}\left(\text { here, } C_{0}=\frac{s}{d}\right)\)