$HC\, \equiv \,CH\,\xrightarrow[{20\% \,{H_2}S{O_4}}]{{1\% \,HgS{O_4}}}A$ $\xrightarrow[{{H_2}O}]{{C{H_3}MgX}}B\xrightarrow{{[O]}}(C)$
$\begin{array}{*{20}{c}}
{C{H_3} - C = CH - C{H_2}C{H_3}} \\
{|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\
{CH{{(C{H_3})}_2}\,\,\,\,\,\,\,\,\,\,}
\end{array}\xrightarrow[{(ii)\,{H_2}{O_2},O{H^ - }}]{{(i)\,{B_2}{H_6}}}[A]$$\xrightarrow[\Delta ]{{dil.\,{H_2}S{O_4}}}[B]$
$\mathop C\limits_6 {H_3} - \mathop C\limits_5 H = \mathop C\limits_4 H - \mathop C\limits_3 {H_2} - \mathop C\limits_2 \equiv \mathop C\limits_1 H$
કાર્બન્સ $1, 3$ અને $5$ ના સંકરણની સ્થિતિ નીચેના ક્રમમાં છે, તો સાચો ક્રમ શોધો.