\(\alpha = \frac{{{\omega _2} - {\omega _1}}}{t} = \frac{{20 - 0}}{5} = 4\,rad/se{c^2}\)
\(\theta = {\omega _1}t + \frac{1}{2}\alpha \,{t^2} = 0 + \frac{1}{2}(4)\,.\,{(5)^2}\, = 50\,rad\)
\(2\pi \,rad \,means \,1 \,revolution.\)
\(\therefore 50 \,Radian \,means \,\frac{{50}}{{2\pi }}\, \,or \,\frac{{25}}{\pi }\,rev.\)