$\left\lfloor{m}_{e}=\text { mass of electron }=9 \times 10^{-31} \,{kg}\right.$
${h}=\text { Planck constant }=6.6 \times 10^{-34} {Js}$
$\left.{k}_{{B}}=\text { Boltzmann constant }=1.38 \times 10^{-23}\, {JK}^{-1}\right]$
\(\lambda=\frac{{h}}{{mv}}=\frac{{h}}{\sqrt{2 {mE}}}\)
Where \({E}\) is kinetic energy
\({E}=\frac{3 {kT}}{2} \text { for gas }\)
\(\lambda=\frac{{h}}{\sqrt{3 {mkT}}}=\frac{6.6 \times 10^{-34}}{\sqrt{3 \times 9 \times 10^{-31} \times 1.38 \times 10^{-23} \times 300}}\)
\(\lambda=6.26 \times 10^{-9}\, {m}=6.26\, {nm}\)