\({\sigma _B} = - \sigma = \frac{{{q_b}}}{{4\pi {b^2}}}\,\, \Rightarrow \,\,{q_b} = - \sigma \times 4\pi {b^2}\)
\({\sigma _C} = \sigma = \frac{{{q_c}}}{{4\pi {c^2}}}\, \Rightarrow \,{q_c} = \sigma \times 4\pi {c^2}\)
\({V_A} = {({V_A})_{{\rm{surface}}}} + {({V_B})_{{\rm{in}}}} + {({V_C})_{{\rm{in}}}}\)\( = \frac{1}{{4\pi {\varepsilon _0}}}\left[ {\frac{{{q_a}}}{a} + \frac{{{q_b}}}{b} + \frac{{{q_c}}}{c}} \right]\)
\( = \frac{1}{{4\pi {\varepsilon _0}}}\left[ {\frac{{\sigma \times 4\pi {a^2}}}{a} + \frac{{( - \sigma ) \times 4\pi {b^2}}}{b} + \frac{{\sigma \times 4\pi {c^2}}}{c}} \right]\)\({V_A} = \frac{\sigma }{{{\varepsilon _0}}}\left[ {a - b +c]} \right]\)
\({V_B} = {({V_A})_{{\rm{out}}}} + {({V_B})_{{\rm{surface}}}} + {({V_C})_{{\rm{in}}}} = \frac{1}{{4\pi {\varepsilon _0}}}\left[ {\frac{{{q_a}}}{b} + \frac{{{q_b}}}{b} + \frac{{{q_c}}}{c}} \right]\)
\( = \frac{1}{{4\pi {\varepsilon _0}}}\left[ {\frac{{\sigma \times 4\pi {a^2}}}{b} - \frac{{\sigma \times 4\pi {b^2}}}{b} + \frac{{\sigma \times 4\pi {c^2}}}{c}} \right]\)\( = \frac{\sigma }{{{\varepsilon _0}}}\left[ {\frac{{{a^2}}}{b} - b + c} \right]\)