\(\omega \, = \,7\,\pi ,\,k\, = \,0.04\pi \)
\(v\, = \,\frac{\omega }{k}\, = \,\frac{{7\pi }}{{.04\pi }} \,= 175 \,m/sec\)
${y}=1.0\, {mm} \cos \left(1.57 \,{cm}^{-1}\right) {x} \sin \left(78.5\, {s}^{-1}\right) {t}$
${x}>0$ ના ક્ષેત્રમાં ઉગમબિંદુથી નજીકનું નિસ્પંદ બિંદુ ${x}=\ldots \ldots \ldots\, {cm}$ અંતરે હશે.
એક વાહન જેના હોર્નની આવૃત્તિ $n$ છે તે અવલોકનકાર અને વાહનને જોડતી રેખાને લંબ દિશામાં $30\;m/s$ ના વેગ સાથે ગતિ કરે છે. અવલોકનકારને સંભળાતી આવૃત્તિ $n +n_1$ છે, તો (જો હવામાં ધ્વનિનો વેગ $300\;m/s$ છે)