ઊગમબિંદુ આગળ $0.009\ \mu C$ નો બિંદુવત વિદ્યુતભાર મૂકેલો છે. બિંદુ $(\sqrt 2 ,\,\,\sqrt 7 ,\,\,0)$ આગળ આ બિંદુવત વિદ્યુતભારને લીધે વિદ્યુતક્ષેત્રની તીવ્રતાની ગણતરી કરો.
Medium
Download our app for free and get started
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
ધારો કે સમાન વિદ્યુતભારિત દિવાલ $2 \times 10^4 \mathrm{~N} / \mathrm{C}$ મૂલ્યનું એક લંબ સમાન વિદ્યુતક્ષેત્ર આપે છે. એક $2 \mathrm{~g}$ દળના વિદ્યુતભારિત કણને $20 \mathrm{~cm}$ લંબાઈના સિલ્કના દોરા વડે લટકાવવામાં આવે છે અને તે દિવાલ થી $10 \mathrm{~cm}$ દૂર રહે છે. કણ પરનો વિદ્યુતભાર $\frac{1}{\sqrt{x}}$ $\mu \mathrm{C}$ હોયતો $x$=__________થશે. $[g=10 m/s$
બે બિંદુવત વિદ્યુતભારો $+ 9\ e$ અને $+e$ એકબીજાથી $16\, cm$ દૂર મૂકેલા છે. તેમની વચ્ચે ત્રીજો વિદ્યુતભાર $q$ ને ક્યાં મૂકવામાં આવે કે જેથી તે સંતુલન સ્થિતિમાં હોય.
આકૃતિમાં દર્શાવ્યા પ્રમાણે બોક્સમાથી $\overrightarrow{\mathrm{E}}=4 \mathrm{x} \hat{\mathrm{i}}-\left(\mathrm{y}^{2}+1\right) \hat{\mathrm{j}}\; \mathrm{N} / \mathrm{C}$ જેટલું વિદ્યુતક્ષેત્ર પસાર થાય છે $A B C D$ અને $BCGF$ સપાટીમાંથી પસાર થતું ફ્લક્સ $\phi_{I}$ અને $\phi_{\mathrm{II}}$ હોય તો તેમનો તફાવત $\phi_{\mathrm{I}}-\phi_{\mathrm{II}}$ ($\mathrm{Nm}^{2} / \mathrm{C}$ માં) કેટલો મળે?
એક વિદ્યુત ડાયપોલને $4 \times 10^5 \,N / C$ તીવ્રતાના વિદ્યુતક્ષેત્ર સાથે $60^{\circ}$ ના ખૂણો મૂકવામાં આવી છે. તે $8 \sqrt{3} \,Nm$ જેટલુ ટોર્ક અનુભવે છે. જો ડાયપોલની લંબાઈ $4 \,cm$ હોય તો ડાયપોલ પર વિદ્યુતભાર ............... $C$