$y$ કણની વેગમાનની અચોક્કસતા=$\Delta P_{(y)}$
$x$ કણના સ્થાનની અચોક્કસતા =$\Delta X_{(x)}$
$y$ કણના સ્થાનની અચોક્કસતા =$\Delta X_{(y)}$
હવે $\Delta {P_{(x)}}\,\, = \,\,\frac{{\Delta {P_{(y)}}}}{2}\,\,\,\Delta {x_{(x)}}\, \times \,\Delta {P_{(x)}}\,\, = \,\,\frac{h}{{4\pi }}\,\,\,\therefore \,\,\Delta {x_{(x)}}\, \times \,\frac{{\Delta {P_{(y)}}}}{2}\, = \,\frac{h}{{4\pi }}$
$\therefore \,\,0.05\, \times \,\Delta {P_{(y)}}\,\, = \,\,\frac{{2h}}{{4\pi }}\,\,\,\therefore \,\,\Delta {P_{(y)}}\,\, = \,\,\frac{{2h}}{{4\pi \, \times \,0.05}}\,\,\Delta {x_{(y)}}\, \times \,\Delta {P_{(y)}}\,\, = \,\,\frac{h}{{4\pi }}$
$\therefore \,\Delta {x_{(y)}}\, \times \,\frac{{2h}}{{4\pi \, \times \,0.05}}\,\, = \,\,\frac{h}{{4\pi }}\,\,\,\therefore \,\,\Delta {x_{(y)}}\,\, = \,\,\frac{{h\, \times \,4\pi \, \times \,0.05}}{{4\pi \, \times \,2h}}\,\,\,\therefore \,\,\Delta {x_{(y)}}\,\, = \,\,0.025\,\mathop A\limits^ \circ $
$\Delta {x_{(y)}} \,=\, $ $2.5 \times 10^{-10}$ સેમી