\(OA=\left|\vec{r}_{1}\right|=\sqrt{(\sqrt{2})^{2}+(\sqrt{2})^{2}}=\sqrt{4}=2\) units.
The distance of point \(B(2,0)\) from the origin,
\(O B=|\overrightarrow{r_{2}}|=\sqrt{(2)^{2}+(0)^{2}}=2\) units.
Now, potential at \(A, V_{A}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{Q}{(O A)}\)
Potential at \(B, V_{B}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{Q}{(O B)}\)
\(\therefore \) Potential difference between the points \(A\) and \(B\) is zero.