$1000\, W$ પ્રકાશનાં ગોળા દ્વારા ઉત્સર્જાયેલા વિકીરણ થી $2\, m$ અંતરે આવેલા બિંદુ $P$ પાસે વિદ્યુત ક્ષેત્ર તેમજ ચુંબકીય ક્ષેત્ર ઉત્પન્ન થાય છે. પ્રકારનાં ગોળાની કાર્યક્ષમતાં $1.25\%$ છે. બિંદુ $P$ પાસે મહત્તમ વીજક્ષેત્રનું મૂલ્ય $x \times 10^{-1} \;V / m \cdot x$ નું મૂલ્ય ........ છે. (નજીકનાં પૂર્ણાક માટે શૂન્યાંત (Round-off) મેળવો)

$\left[\varepsilon_{0}=8.85 \times 10^{-12}\; C ^{2} N ^{-1} m ^{-2}, c =3 \times 10^{8}\; ms ^{-1}\right.$ લો.]

  • A$137$
  • B$149$
  • C$164$
  • D$121$
JEE MAIN 2021, Diffcult
Download our app for free and get startedPlay store
a
\(I _{ avg }=\frac{1}{2} \varepsilon_{0} E _{0}^{2} C\)

\(\frac{1.25}{100} \times \frac{1000}{4 \pi(2)^{2}}=\frac{1}{2} \times 8.85 \times 10^{-12} \times 3\times 10^{8} \times E _{0}^{2}\)

\(E _{0}^{2}=187.4\)

\(\therefore E _{0}=13.689 V / m\)

\(=136.89 \times 10^{-1} V / m\)

\(\therefore x =136.89\)

Rounding off to nearest integer \(x =137\)

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    $+z$ દિશામાં ગતિ કરતાં વિદ્યુતચુંબકીય તરંગ માટે આવૃતિ $1\times10^{14}\, hertz$ અને વિદ્યુતક્ષેત્રનું મૂલ્ય $4\, V/m$ છે. જો ${\varepsilon_0}=\, 8.8\times10^{-12}\, C^2/Nm^2$ હોય તો આ વિદ્યુતક્ષેત્રની સરેરાશ ઉર્જા ઘનતા કેટલી હશે?
    View Solution
  • 2
    માધ્યમમાં વિદ્યુતચુંબકીય તરંગનો વેગ કોના બરાબર હશે.(ડાયાઈલેક્ટ્રીક અચળાંક $2.25$ અને સાપેક્ષ પરમેબીલીટી $4)$
    View Solution
  • 3
    નીચે બે વિધાનો આપેલા છે

    વિધાન $1$:- અવકાશમાં ગતિ કરતા વિદ્યુત ચુંબકીય તરંગો પોતાની સાથે ઊર્જાનું વહન કરે છે. જેમાં વિદ્યુત ક્ષેત્ર અને ચુંબકીય ક્ષેત્રના સ્વરૂપમાં સમાન ઉર્જ આવેલી હોય છે. વિધાન

    $2$:- જયારે વિદ્યુત ચુંબકીય તરંગો કોઈ સપાટી પર આપાત થાય ત્યારે તે સપાટી પર દબાણુ લગાડે છે.

    View Solution
  • 4
    પ્રકાશના કિરણને $E=800 \sin \omega\left(t-\frac{x}{c}\right)$ મુજબ દર્શાવવામાં આવે છે. એક ઇલેક્ટ્રોનને $3 \times 10^{7}$ ${ms}^{-1}$ ની ઝડપથી આ પ્રકાશના કિરણને લંબરૂપે દાખલ કરવામાં આવે તો ઇલેક્ટ્રોન પર મહત્તમ કેટલું ચુંબકીય બળ લાગશે?
    View Solution
  • 5
    આપેલ વિદ્યુતયુંબકીય તંરગ માટે વિદ્યુતક્ષેત્ર $\mathrm{E}_{\mathrm{y}}=\left(600 \mathrm{~V} \mathrm{~m}^{-1}\right) \sin (\mathrm{Wt}-\mathrm{kx})$ થી અપાય છે. સાથે સંકળાયેલ પ્રકાશ કિરણપૂંજ ની તીવ્રતા $(W/ \mathrm{m}^2$ માં). . . .થશે.

    $\left(\epsilon_0=9 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right.$  આપેલ છે.) 

    View Solution
  • 6
    શૂન્યાવકાશમાં પ્રસરી રહેલા વિદ્યુતચુંબકીય તરંગો માટે ચુંબકીય ક્ષેત્ર અને વિદ્યુત ક્ષેત્રના કંપવિસ્તારનો ગુણોત્તર કોને બરાબર થાય?
    View Solution
  • 7
    નીચેનામાંથી કયા વિદ્યુતચુંબકીય તરંગોની આવૃત્તિ ઓછી છે ?
    View Solution
  • 8
    અચુંબકીય ડાઈઇલેક્ટ્રિક માધ્યમમાં સમતલીય વિદ્યુતચુંબકીય તરંગ માટે વિદ્યુતક્ષેત્ર $\vec E\, = \,{\vec E_0}\,(4 \times {10^{ - 7}}\,x - 50t)$ મુજબ આપવામાં આવે છે, જ્યાં અંતર મીટરમાં અને સમય સેકન્ડમાં છે. તો આ માધ્યમનો ડાઈઇલેક્ટ્રિક અચળાંક કેટલો હશે?
    View Solution
  • 9
    નીચે બે વિધાનો આપેલા છે.

    વિધાન $I$ : સમય સાથે બદલાતું જતું વિદ્યુતક્ષેત્ર એ બદલાતા યુંબકીય ક્ષેત્રનું ઉદગમ છે ને તેનાથી ઉલટું, તેથી. વિદ્યુત અથવા ચુંબુકીય ક્ષેત્રમાં વિક્ષોભ $EM$ તરંગો ઉત્પન્ન કરશે.

    વિધાન $II$ :  દ્રવ્ય માધ્યમાં, $EM$ તરંગ $v =\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}$ જેટલી ઝડપ સાથે ગતિ કરે છે.

    નીયે આપેલા વિકલ્પોમાંથી સાયો ઉત્તર પસંદ કરો. 

    View Solution
  • 10
    મુક્ત અવકાશમાં $x -$ અક્ષની દિશામાં વિદ્યુતચુંબકીય તરંગ પ્રવર્તે છે કોઈ ચોક્કસ સ્થાને અને સમયે $y -$ અક્ષની દિશામાં વિદ્યુતક્ષેત્રનો ઘટક $E =6\; Vm^{-1}$ હોય તો તેની સાથે સંકળાયેલ ચુંબકીયક્ષેત્ર કેટલું હશે? 
    View Solution