Change in potential energy of the capacitor
\(=\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{r}}\)
\(=\frac{\mathrm{Q}^2}{2 \mathrm{C}_{\mathrm{i}}}-\frac{\mathrm{Q}^2}{2 \mathrm{C}_{\mathrm{f}}}=\frac{\mathrm{Q}^2}{2 \mathrm{C}_0}\left[1-\frac{1}{\epsilon_{\mathrm{r}}}\right]\)
\(=\frac{\left(\mathrm{C}_0 \mathrm{~V}\right)^2}{2 \mathrm{C}_0}\left[1-\frac{1}{\epsilon_{\mathrm{r}}}\right]=\frac{1}{2} \mathrm{C}_0 \mathrm{~V}^2\left[1-\frac{1}{\epsilon_{\mathrm{r}}}\right]\)
Using \(\mathrm{C}_0=12.5 \mathrm{pF}, \mathrm{V}=12 \mathrm{~V}, \epsilon_{\mathrm{r}}=6\)
\(=\frac{1}{2}(12.5) \times 12^2\left[1-\frac{1}{6}\right]=\frac{1}{2}(12.5) \times 12^2 \times\)
\(\frac{5}{6}\)
\(=750 \mathrm{pJ}=750 \times 10^{-12} \mathrm{~J}\)