\(0.96\, \mathrm{I}=\frac{1}{2} \mathrm{E}_{0}^{2} \mathrm{V}\) ..... \((ii)\)
\(\Rightarrow \quad 0.96=\left(\frac{E_{0}^{\prime}}{E_{0}}\right)^{2} \frac{\varepsilon}{\varepsilon_{0}} \frac{V}{C}\)
\(0.96 = {\left( {\frac{{E_0^\prime }}{{{E_0}}}} \right)^2}\frac{\varepsilon }{{{\varepsilon _0}}}\frac{1}{{1.5}}\)
\({0.96=\left(\frac{E_{0}^{\prime}}{E_{0}}\right)^{2} \varepsilon_{r} \frac{1}{1.5}}\) ..... \((iii)\)
and \({\text{v}} = \frac{1}{{\sqrt {{\mu _{\text{o}}}{\varepsilon _{\text{o}}}{\mu _{\text{r}}}{\varepsilon _{\text{r}}}} }};\) \({\text{v}} = \frac{{\text{C}}}{{\sqrt {{\mu _{\text{r}}}{\varepsilon _{\text{r}}}} }}\)
\(\sqrt {{\mu _r}{\varepsilon _r}} = \frac{C}{v}\) ; \(\sqrt {{\varepsilon _r}} = 1.5\,;\) \({\mu _r} \approx 1\) for transparent medium.
From equation \((iii)\)
\(0.96=\left(\frac{E_{0}^{\prime}}{E_{0}}\right)^{2}(1.5)^{2}\left(\frac{1}{1.5}\right)\)
\(\Rightarrow E_{\circ}^{\prime}=24 \mathrm{V} / \mathrm{m}\)
નીચે આપેલા વિકલ્પોમાંથી સાચો ઉત્તર પસંદ કરોઃ