\(r=4\, \mathrm{cm}=4 \times 10^{-2}\, \mathrm{m}\)
\( \text { Potential } V =\frac{\mathrm{k} q}{\mathrm{r}} \)
\(=\frac{9 \times 10^{9} \times 10^{-6}}{4 \times 10^{-2}} \)
\(=2.25 \times 10^{5}\, \mathrm{V} \)
Induced electric field \(\mathrm{E}=-\frac{\mathrm{kq}}{\mathrm{r}^{2}}\)
\(=\frac{9 \times 10^{9} \times 1 \times 10^{-6}}{16 \times 10^{-4}}=-5.625\, \times 10^{6}\, \mathrm{V} / \mathrm{m}\)
$\left( {\frac{1}{{4\pi { \in _0}}} = k} \right).$