$Ag+ I^- \rightarrow AgI +e^-,$ $E^o = 0.152\, V$
$Ag \rightarrow Ag^+ +e^-,$ $E^o =-0.800\, V$
$AgI$ માટે log $K_{sp}$નું મૂલ્ય શું થશે ? $(2. 303\, RT/F= 0. 059\, V)$
\(E^{\circ}=-0.800\, V\)
\((ii)\) \(A g+\mathrm{I}^{-} \rightarrow A g \mathrm{I}+e\)
\(E^{\circ}=0.152\, V\)
From ( \(i\) ) and \((ii)\) we have,
\(A g \mathrm{I} \rightarrow A g^{+}+\mathrm{I}\)
\(E^{\circ}=-0.952\, V\)
\(E_{c e l l}^{\circ}=\frac{0.059}{n} \log K\)
\(\therefore-0.952=\frac{0.059}{1} \log \left[A g^{+}\right]\left[\mathrm{I}^{\mathrm{I}}\right]\)
[as \(k=\left[A g^{+}\right]\left[\mathrm{I}^{-}\right]\)
\(\quad-\frac{0.952}{0.059}=\log K_{s p}\)
\(\quad-16.13=\log K_{s p}\)
$mol^{-1}, ᴧ^{0}\, KCl = 150\, S\, cm^{2}\, mol^{-1}$ હોય, તો $ᴧ^{0}\, NaBr$ .............. ${\rm{S}}\,{\rm{c}}{{\rm{m}}^2}{\rm{mo}}{{\rm{l}}^{ - 1}}$ શોધો.