\(\therefore \,{K_{sp}} = 4{S^3} = 4 \times {10^{ - 9}}\)
In \(0.05\,M\,NaF\) we have \(0.05\,M\) of \(F^-\) ion contributed by \(NaF.\) If the solubility of \(PbF_2\)
in this solution is \(S\,M\), then
total \([{F^ - }] = [2S + 0.05]\,M\)
\(\therefore S{[2S + 0.05]^2} = 4 \times {10^{ - 9}}\)
Assuming \(2S < < 0.05,\)
\(S \times 25 \times {10^{ - 4}} = 4 \times {10^{ - 9}}\)
\(\therefore \,S \times 0.16 \times {10^{ - 5}}\,M \Rightarrow 1.6 \times {10^{ - 6}}\,M\)
We observe that our approximation that \(2S < < 0.05\) is justified.
|
ક્રમ |
સૂત્ર |
દ્રવ્યતા ગુણાકાર |
|
$1$ |
$PQ$ |
$4.0\times 10^{-20}$ |
|
$2$ |
$PQ_2$ |
$3.2 \times 10^{-14}$ |
|
$3$ |
$PQ_3$ |
$2.7\times 10^{-35}$ |
$AgIO_{3(s)} \rightleftharpoons Ag^+_{(aq)} +IO^-_{3(aq)}.$
જો આપેલ તાપમાને $AgIO_3$ દ્રાવ્યતા ગુણાકાર અચળાંક $1. 0 \times 10^{-8}$ હોય, તો તેના $100\, ml$ સંતૃપ્ત દ્રાવણમાં $AgIO_3$ નું દળ જણાવો.