$1 {M}\quad 1 {M} \quad 1 {M} \quad1 {M}$
First check direction of reversible reaction.
Since ${Q}_{{c}}=\frac{[{C}][{D}]}{[{A}][{B}]}=1<{K}_{{eq} .} \Rightarrow$ reaction will move in forward direction to attain equilibrium state.
$\Rightarrow {A}+{B} \rightleftharpoons {C}+{D}: {K}_{{eq}}=100$
$to \quad 1\quad 1\quad\quad 1\quad 1$
${t}_{\text {eq. }} \, 1-{x} \, 1-{x} \, 1+{x} \, 1+{x}$
Now $: {K}_{{eq}}=100=\frac{(1+{x})(1+{x})}{(1-{x})(1-{x})}$
$\Rightarrow 100=\left(\frac{1+x}{1-x}\right)^{2}$
$(i)$ $10=\left(\frac{1+{x}}{1-{x}}\right)$
$\Rightarrow 10-10 {x}=1+{x}$
$\Rightarrow 11 {x}=9$
$\Rightarrow {x}=\frac{9}{11}$
$(ii)$ $-10=\frac{1+{x}}{1-{x}}$
$\Rightarrow-10+10 {x}=1+{x}$
$\Rightarrow-9 x=-11$
$\Rightarrow x=\frac{11}{9}$
$\rightarrow$ $'x'$ cannot be more than one, therefore not valid. therefore equation concretion of $(D)=1+x$
$=1+\frac{9}{11}=\frac{20}{11}$
$=1.8181=181.81 \times 10^{-2}$
$\simeq 182 \times 10^{-2}$
$II: C + D $ $\rightleftharpoons$ $ 3A ; K_{eq}= K_2, $
$III: 6B + D $ $\rightleftharpoons$ $2C; K_{eq} = K_3$ જેથી,
$Co{O_{2\left( g \right)}} + C{O_{\left( g \right)}} \rightleftharpoons Co{O_{\left( s \right)}} + C{O_{2\left( g \right)}}\,\,;\,K = 490$
તો નીચેની પ્રક્રિયા માટે સંતુલન અચળાંક .... થશે.
$C{O_{2\left( g \right)}} + {H_{2\left( g \right)}} \rightleftharpoons C{O_{\left( g \right)}} + {H_2}{O_{\left( g \right)}}$
$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
જો પ્રક્રિયાનું $K_p$ $1.1\times10^{-3}$ છે, તોકદના ટકાની દ્રષ્ટિએ ઉત્પન્ન થયેલ નાઇટ્રિક ઓકસાઈડની માત્રાની ગણતરી કરો.
$\frac{1}{2} Cu ^{2+}( aq )+ Ag ( s ) \rightleftharpoons \frac{1}{2} Cu ( s )+ Ag ^{+}( aq )$
પ્રક્રિયા માટે સંતુલન અચળાંક $x \times 10^{-8}$ છે. તો $x$નું મૂલ્ય $......$ છે. (નજીકનો પૂર્ણાંક)