$\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{O}_{3(\mathrm{~g})} \cdot \mathrm{K}_{\mathrm{P}}=2.47 \times 10^{-29} \text {. }$
(આપેલ : R = $\left.8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
\(\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{P}}\)
\(=-8.314 \times 10^{-3} \times 298 \times \ln \left(2.47 \times 10^{-29}\right)\)
\(=-8.314 \times 10^{-3} \times 298 \times(-65.87)\)
\(=163.19 \mathrm{~kJ}\)
$X \rightleftharpoons Y + Z$ $...(i)$
$A \rightleftharpoons 2B$ $...(ii)$
જો $X$ અને $A$નો વિયોજન અંશ સમાન હોય, તો કુલ દબાણે સંતુલન $(i)$ અને $(ii)$ના મૂલ્યોનો ગુણોતર..........
$N _{2} O _{4}( g ) \rightleftharpoons 2 NO _{2}( g ) ; \Delta H ^{0}=+58 kJ$
નીચેના દરેક તબક્કા માટે $(a, b),$ જેમાં સંતુલન સ્થળાંતર કરતી દિશા:
$(a)$ તાપમાન ઘટે છે.
$(b)$ અચળ $T$ એ $N _{2}$ ઉમેરતાં દબાણ વધે છે.