$\lambda {\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 4000{\mkern 1mu} \,\mathop A\limits^o {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \lambda {\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 4000 \times {10^{ - 10}}{\mkern 1mu} m$
$\because \,\,v = \frac{c}{\lambda }\,\,\,\,$
$\therefore \,\,v = \frac{{3 \times {{10}^8}\,m/s}}{{4 \times {{10}^{ - 7}}\,m}}\,\,\, = \,\,0.75 \times {10^{15}}\,{s^{ - 1}}\,\, = \,\,7.5 \times {10^{14}}\,{s^{ - 1}}$
ઉર્જા ની ગણતરી : $E = hv = 6.626 \times 10^{-34} \,J \times 7.5 \times 10^{14}\,s^{-1} = 4.96 \times 10^{-19}\,J$
$A. \;n =3, l=2, m _{1}=1, m _{ s }=+1 / 2$
$B.\; n =4, l=1, m _{1}=0, m _{ s }=+1 / 2$
$C. \;n =4, l=2, m _{1}=-2, m _{ s }=-1 / 2$
$D. \;n =3, l=1, m _{1}=-1, m _{ s }=+1 / 2$
વધતી ઊર્જાનો સાચો ક્રમ શોધો.