Rewriting the denominators for expressions, we get
= \({{{{ - 4} \over 3}} \over {2\left( {1 + {x \over 2}} \right)}} + {{{{11} \over 3}} \over {1 - x}} = {{ - 2} \over 3}{\left( {1 + {x \over 2}} \right)^{ - 1}} + {{11} \over 3}{(1 - x)^{ - 1}}\)
= \({{ - 2} \over 3}\left[ {1 - {x \over 2} + {{{x^2}} \over 4} - {{{x^3}} \over 8} + ...... + {{( - 1)}^n}{{{x^n}} \over {{2^n}}} + ......} \right]\,\)
\( + {{11} \over 3}[1 + x + {x^2} + ....... + {x^n} + .....]\)
The coefficient of \({x^n}\) in the given expression is
\({{ - 2} \over 3}{( - 1)^n}{1 \over {{2^n}}} + {{11} \over 3}\).