${{5x + 6} \over {(2 + x)\,(1 - x)}}$ ના વિસ્તરણને ચડતા ક્રમમાં ગોઠવતા ${x^n}$ નો સહગુણક મેળવો.
  • A${{ - \,2} \over 3}\,{{{{( - 1)}^n}} \over {{2^n}}} + {{11} \over 3}$
  • B${2 \over 3} + {{{{( - 1)}^n}} \over {{2^n}}} - {{11} \over 3}$
  • C$ - {2 \over 3} + {{{{( - 1)}^n}} \over 3} - {{11} \over {{2^n}}}$
  • D
    એકપણ નહીં
Medium
Download our app for free and get startedPlay store
a
(a) \({{5x + 6} \over {(2 + x)\,(1 - x)}} = {{{{ - 4} \over 3}} \over {2 + x}} + {{{{11} \over 3}} \over {1 - x}}\)

Rewriting the denominators for expressions, we get

= \({{{{ - 4} \over 3}} \over {2\left( {1 + {x \over 2}} \right)}} + {{{{11} \over 3}} \over {1 - x}} = {{ - 2} \over 3}{\left( {1 + {x \over 2}} \right)^{ - 1}} + {{11} \over 3}{(1 - x)^{ - 1}}\)

= \({{ - 2} \over 3}\left[ {1 - {x \over 2} + {{{x^2}} \over 4} - {{{x^3}} \over 8} + ...... + {{( - 1)}^n}{{{x^n}} \over {{2^n}}} + ......} \right]\,\)

\( + {{11} \over 3}[1 + x + {x^2} + ....... + {x^n} + .....]\)

The coefficient of \({x^n}\) in the given expression is

\({{ - 2} \over 3}{( - 1)^n}{1 \over {{2^n}}} + {{11} \over 3}\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    સમીકરણ ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$ નો ઉકેલ મેળવો.
    View Solution
  • 2
    જો $a = {\log _{24}}12,\,b = {\log _{36}}24$ અને $c = {\log _{48}}36$ તો $1+abc = . . . .$
    View Solution
  • 3
    ${{(x - a)(x - b)} \over {(x - c)(x - d)}} = {A \over {x - c}} - {B \over {(x - d)}} + C$, તો $C = . . .. $
    View Solution
  • 4
    સરવાળો $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}= ..............$
    View Solution
  • 5
    જો ${\log _{10}}x + {\log _{10}}\,y = 2$ હોય તો $(x + y)$ ની ન્યૂનતમ શકય કિમત મેળવો 
    View Solution
  • 6
    જો ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ તો $x = .. . .$
    View Solution
  • 7
    જો $x = 3 - \sqrt {5,} $ તો ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
    View Solution
  • 8
    જો $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$ તો આપેલ પૈકી કોની કિમત $1$ છે.
    View Solution
  • 9
    જો ${{a{x^2} + bx + c} \over {(x - 1)\,(x + 2)\,(2x + 3)}} = {3 \over {x - 1}} + {2 \over {x + 2}} - {5 \over {2x + 3}}$, તો
    View Solution
  • 10
    ${1 \over {\sqrt {(11 - 2\sqrt {30} )} }} - {3 \over {\sqrt {(7 - 2\sqrt {10} )} }} - {4 \over {\sqrt {(8 + 4\sqrt 3 )} }} = $
    View Solution