જો $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$ તો આપેલ પૈકી કોની કિમત $1$ છે.
  • A$x + y + z$
  • B${(1 + x)^{ - 1}} + {(1 + y)^{ - 1}} + {(1 + z)^{ - 1}}$
  • C$xyz$
  • D
    એકપણ નહી.
Medium
Download our app for free and get startedPlay store
b
(b) \(x = {\log _a}bc\) \( \Rightarrow \) \(1 + x = {\log _a}a + {\log _a}bc = {\log _a}abc\)

\(\therefore {(1 + x)^{ - 1}} = {\log _{abc}}a\)

\(\therefore {(1 + x)^{ - 1}} + {(1 + y)^{ - 1}} + {(1 + z)^{ - 1}} = {\log _{abc}}a + {\log _{abc}}b + {\log _{abc}}c\)

\( = {\log _{abc}}abc = 1\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    ${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9= . .$ . .
    View Solution
  • 2
    જો ${{3x + a} \over {{x^2} - 3x + 2}} = {A \over {(x - 2)}} - {{10} \over {x - 1}}$, તો
    View Solution
  • 3
    જો ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ હોય તો 
    View Solution
  • 4
    જો $x \ne 0 $ તો ${\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$
    View Solution
  • 5
    ${\log _2}(x + 5) = 6 - x$ ના ઉકેલની સંખ્યા મેળવો.
    View Solution
  • 6
    જો ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, તો $a$ અને $b$ વચ્ચેનો સંબંધ મેળવો.
    View Solution
  • 7
    જો ${{3x + 4} \over {{x^2} - 3x + 2}} = {A \over {x - 2}} - {B \over {x - 1}}$,તો $(A,\,B) = $
    View Solution
  • 8
    $\sum {{1 \over {1 + {x^{a - b}} + {x^{a - c}}}} = } $
    View Solution
  • 9
    $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ નું વર્ગમૂળ મેળવો.
    View Solution
  • 10
    જો ${{{{(x + 1)}^2}} \over {{x^3} + x}} = {A \over x} + {{Bx + C} \over {{x^2} + 1}}$, તો ${\sin ^{ - 1}}\left( {{A \over C}} \right) = $
    View Solution