Smaller mass, \(m_{1}=8 \,kg\)
Larger mass, \(m_{2}=12\, kg\)
Tension in the string \(=T\)
Mass \(m_{2},\) owing to its weight, moves downward with acceleration \(a,\) and mass \(m_{1}\) moves upward.
Applying Newton's second law of motion to the system of each mass:
For mass \(m_{\underline{1}}:\) The equation of motion can be written as:
\(T-m_{1} g =m a\)
For mass \(m_{2}\) : The equation of motion can be written as:
\(m_{2} g -T=m_{2} a\)
Adding above equations , we get:
\(\left(m_{2}-m_{1}\right) g =\left(m_{1}+m_{2}\right) a\)
\(\therefore a=\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) g\)
\(=\left(\frac{12-8}{12+8}\right) \times 10=\frac{4}{20} \times 10=2 m / s ^{2}\)
Therefore, the acceleration of the masses is \(2 \;m / s ^{2}\)
Substituting the value of \(a\) in equation ( \(i i\) ), we get:
\(m_{2} g -T=m_{2}\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) g\)
\(T=\left(m_{2}-\frac{m_{2}^{2}-m_{1} m_{2}}{m_{1}+m_{2}}\right) g\)
\(=\left(\frac{2 m_{1} m_{2}}{m_{1}+m_{2}}\right) g\)
\(=\left(\frac{2 \times 12 \times 8}{12+8}\right) \times 10\)
\(=\frac{2 \times 12 \times 8}{20} \times 10=96\, N\)
Therefore, the tension in the string is \(96\, N\).
[ $g=10 \,m / s ^2$ લો]