\(Li = M \cdot V \times AC\)
\(= MV \cdot( a / 2)=[( mva ) / 2]\)
after hitting, \(L_{f}=I_{0} \omega\)
\(I_{0}\) is MI of block about axis through \(O\) and perpendicular to plane of block.
if \(I_{c}\) is MI about \(C\) then \(I_{C}=\left[\left(M a^{2}\right) / 6\right]\)
From parallel axes theorem,
\(I_{0}=I_{c}+M r^{2}\)
and \(r^{2}=(a / 2)^{2}+(a / 2)^{2}=\left(a^{2} / 2\right)\)
\(I_{0}=(1 / 6) M a^{2}+(1 / 2) M a^{2}=(2 / 3) M a^{2}\)
\(L _{ f }=(2 / 3) Ma ^{2} \cdot \omega\)
also \(L _{ i }= L _{ f }\) hence
\([( mva ) / 2]=(2 / 3) Ma ^{2} \omega\) hence \(\omega=(3 v / 4 a )\)