using small angle approximation \(\sin \theta=\theta\)
\(\theta=\frac{1}{100}\)
\(\therefore \quad \mathrm{T}=\frac{10}{\theta}\)
\(T=1000 \mathrm{~N}\)
Change in length \(\Delta \mathrm{L} \quad=2 \sqrt{\mathrm{x}^2+\mathrm{L}^2}-2 \mathrm{~L}\)
\(=2 \mathrm{~L}\left[1+\frac{\mathrm{x}^2}{2 \mathrm{~L}^2}-1\right]\)
\(\Delta \mathrm{L} =\frac{\mathrm{x}^2}{\mathrm{~L}}\)
\(\therefore\) Modulus of elasticity \(=\frac{\text { stress }}{\text { strain }}\)
\(2 \times 10^{11}=\frac{10^3}{\mathrm{~A} \times \frac{\mathrm{x}^2}{\mathrm{~L}}} \times 2 \mathrm{~L}\)
\(\therefore \quad \mathrm{A}=1 \times 10^{-4} \mathrm{~m}^2\)