$A\xrightarrow{\alpha }{{A}_{1}}\xrightarrow{\beta }{{A}_{2}}\xrightarrow{\alpha }{{A}_{3}}\xrightarrow{\gamma }{{A}_{4}}$
\(\xrightarrow{\alpha }{{\,}_{69}}{{A}_{3}}^{172} \xrightarrow{\gamma }{{\,}_{69}}{{A}_{4}}^{172}\)
$X \stackrel{a}{\longrightarrow} Y$
$Y \underset{2 \beta}{\longrightarrow} Z$
, ત્યારે
${ }_{84}^{218} A \stackrel{\alpha}{\longrightarrow} A_1 \stackrel{\beta^{-}}{\longrightarrow} A_2 \stackrel{\gamma}{\longrightarrow} A_3 \stackrel{\alpha}{\longrightarrow} A_4 \stackrel{B^{+}}{\longrightarrow} A_5 \stackrel{\gamma}{\longrightarrow} A_6$
$A_6$ના પરમાણુ દળમાં અને પરમાણુ ક્રમાંક શું થાય?