\(C_{\text {eff }} \frac{2 c}{3} q\)
\(=\frac{2 c }{3} \times 50\)
\(=\frac{5}{2} \times 10^{-4}\)
\(=1.66 \times 10^{-4}\,C\)
After the switch is made on
Then,
\(c_{\text {eff }}=2 c =10^{-6}\)
\(Q=10^{-6} \times 50\)
\(=5 \times 10^{-4}\,C\)
Now the initial charge will remain stored and in the stored in the short capacitor
Therefore,
Net charge flowing is
\(5 \times 10^{-4}-1.66 \times 10^{-4}\)
\(=3.3 \times 10^{-4}\,C\)
Hence, the net charge flows is \(3.3 \times 10^{-4}\,C\)