\(\begin{gathered}
{m_1}\, = \,\,{m_2}\,\, = \,\,{m_3}\,\, = \,\,m \hfill \\
\mathop {{r_1}}\limits^ \to \, = \,\,(0,\,\,0)\,,\,\,\,\,\,\mathop {{r_2}}\limits^ \to \, = \,\,(b,\,\,0),\,\,\,\,\,\,\mathop {{r_3}}\limits^ \to \, = \,\,(0,\,\,\,h) \hfill \\
\end{gathered} \)
\({r_{cm}}\, = \,\,\frac{{{m_1}\,{r_1}\, + \,\,{m_2}\,{r_2}\, + \,\,{m_3}\,{r_3}}}{{{m_1}\, + \,\,{m_2}\, + \,\,{m_3}}}\,\,\,\,\,\)
\( = \,\,\frac{{m(0,\,\,0)\,\, + \,\,m(b,\,\,0)\,\, + \,\,m(0,\,\,h)}}{{m\, + \,\,m\, + \,\,m}} = \,\,\frac{{m(b,\,\,h)}}{{3\,\,m}}\,\,\,\, \)
\(= \,\,\left( {\frac{b}{3},\,\,\frac{h}{3}} \right)\)