આકૃતિમાં દર્શાવ્યા પ્રમાણે બે બિંદુવત વિજભાર $+Q$ અને $-Q$ ને એક ગોળીય કવચની બખોલમાં મૂકેલા છે. વિજભારને બખોલની સપાટીની નજીક અને કેન્દ્રથી વિરુદ્ધ દિશામાં મૂકેલા છે. જો $\sigma _1$ એ અંદરની સપાટી પૃષ્ઠ વિજભારઘનતા અને $Q_1$ તેના પર રહેલો કુલ વિજભાર અને $\sigma _2$ એ બહારની સપાટીની પૃષ્ઠ વિજભારઘનતા અને $Q_2$ તેના પર રહેલો કુલ વિજભાર હોય તો ...
Inside the cavity net charge is zero.
$\therefore Q_1=0$ and $\sigma_1=0$
There is no effect of point charges $+Q$
$Q$ and induced charge on inner surface on the outer surface.
$\therefore \quad Q_2=0$ and $\sigma_2=0$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
એક ઈલેકટ્રોન $2 \times 10^{-8}\,C\,m ^{-1}$ જેટલી સમાન રેખીય વીજભાર ધનતા ધરાવતા અનંત નળાકારની આસપાસ વર્તુળાકાર પથ પર આકર્ષિત વિદ્યુત ક્ષેત્રની અસર હેઠળ પરિભ્રમણ કરે છે. ઈલેકટ્રોનના પરિભ્રમણનો વેગ ...... $\times 10^6\,m s ^{-1}$ છે. (ઈલેકટ્રોનનું દળ $=9 \times 10^{-31}\,kg$ આપેલ છે.)
અનુક્રમે, $+ \sigma$ અને $+ \lambda$ વિદ્યુતભાર ધનતા ધરાવતા એક અનંત પૃષ્ઠ વિદ્યુતભાર અને અનંત રેખીય વિદ્યુતભારને, એકબીજાને સમાંતર $5\,m$ અંતરે રાખવામાં આવે છે. બિંદુ $P$ અને $Q$ એ રેખીય વિદ્યુતભારથી લંબઅંતરે પૃષ્ઠ તરફ અનુક્રમે $\frac{3}{\pi}\, m$ અને $\frac{4}{\pi}\,m$ અંતરે રહેલા બિંદુ છે. બિંદ્દુ $P$ અને $Q$ આગળ પરિણામી વિદ્યુતક્ષેત્ર ના મૂલ્યો અનુક્રમે $E_P$ અને $E _Q$ છે. જો $2|\sigma|=|\lambda|$ હોય, તો $\frac{E_P}{E_Q}=\frac{4}{a}$ મળે છે. $a$ નું મૂલ્ય ....... થશે.
બે બિંદુવત વિદ્યુતભારો $q_1$ અને $q_2$ હવામાં એકબીજાથી $50\, cm$ અંતરે આવેલા છે. અને અમુક ચોકકસ બળથી આંતરક્રિયા કરે છે હવે સમાન વિદ્યુતભારો જેની સાપેક્ષ પરિમિટિવિટિ $5$ હોય તેવા તેલમાં મૂકવામાં આવે છે. જો તેમના વચ્ચેનું આંતર બળ સમાન હોય તો તેલમાં અંતર ........ $cm$ છે.
$R$ ત્રિજ્યા વાળી એક સમાન રીતે વિદ્યુતભારિત થયેલી રિંગની અક્ષ પર લાગતું વિદ્યુતક્ષેત્રનું મહત્તમ મૂલ્ય તેના કેન્દ્રથી $h$ અંતર આગળ છે. $h$ નું મૂલ્ય હશે.
ધારો કે એક નક્કર ગોળાની ત્રિજ્યા $R$ અને તેના પરનો વિદ્યુતભાર $Q$ છે. આ ગોળાનું વિદ્યુત ઘનતા વિતરણ $\rho( r )=\frac{ Q }{\pi R ^{4}} \cdot r$ સૂત્ર વડે અપાય છે. આ ગોળાની અંદર ગોળાના કેન્દ્રથી $r _{1}$ અંતરે આવેલા બિંદુ $P$ આગળ વિદ્યુતક્ષેત્રનું મૂલ્ય કેટલું થાય?
આકૃતીમાં દર્શાવ્યા મુજબ બે નાના, સમાન દળ $m$ અને સમાન વિદ્યુતભાર $q$ ધરાવતા બોલને સમાન લંબાઇ $L$ ધરાવતી અવાહક દોરી વડે લટકાવેલ છે ધારોકે ઘણો નાનો છે કે જેથી $tan\theta \approx sin\theta $ , તો સંતુલન સમયે $x$ = .....