Hence rate of flow of heat through the given combination is \(\frac{Q}{t} = \frac{{{K_{eq}}.A({T_2} - {T_1})}}{{(x + 4x)}} = \frac{{\frac{5}{3}K\,A\,({T_2} - {T_1})}}{{5x}}\)=\(\frac{{\frac{1}{3}K\,A\,({T_2} - {T_1})}}{x}\) On comparing it with given equation we get \(f = \frac{1}{3}\)