\(R_{1}=3+1=4 \,\Omega, R_{2}=8\, \Omega\)
Let \(i\) be the total current in the circuit.
Current through \(R_{1}\) is \(i_{1}=\frac{i \times R_{2}}{R_{1}+R_{2}}=\frac{i \times 8}{12}=\frac{2 i}{3}\)
Current through \(R_{2}\) is \(i_{2}=\frac{i \times R_{1}}{R_{1}+R_{2}}=\frac{i \times 4}{12}=\frac{i}{3}\)
Power dissipated in \(3\, \Omega\) resistor is
\(P_{1}=i_{1}^{2} \times 3\) ....\((i)\)
Power dissipated in \(8 \Omega\) resistor is
\(P_{2}=i_{2}^{2} \times 8\) ....\((ii)\)
\(\therefore \quad \frac{P_{1}}{P_{2}}=\frac{i_{1}^{2} \times 3}{i_{2}^{2} \times 8}\) or, \(\frac{P_{1}}{P_{2}}=\frac{(2 i / 3)^{2} \times 3}{(i / 3)^{2} \times 8}=\frac{12}{8}=\frac{3}{2}\)
\(P_{1}=\frac{3}{2} \times P_{2}=\frac{3}{2} \times 2=3 \,\text { watt }\)
\(\therefore\) Power dissipated across \(3 \Omega\) resistor is \(3\,watt.\)