The equivalent capacitance between \(C \& D\) capacitors of \(2\, \mu \mathrm{F}, 5\, \mu \mathrm{F}\) and \(5\, \mu \mathrm{F}\) are in parallel.
\(\therefore \mathrm{C}_{\mathrm{CD}}=2+5+5=12 \,\mu \mathrm{F}\)
(\(\because\) In parallel grouping \(C_{e q}=C_{1}+C_{2}+\ldots .+C_{n})\)
Similarly equivalent capacitance between \(\mathrm{E}\) \(\& \mathrm{BC}_{\mathrm{EB}}\)
\(=4+2=6\, \mu \mathrm{F}\)
Now equivalent capacitance between \(A \& B\)
\(\frac{1}{C_{e q}}=\frac{1}{6}+\frac{1}{12}+\frac{1}{6}=\frac{5}{12}\)
\(\Rightarrow \mathrm{C}_{\mathrm{eq}}=\frac{12}{5}=24\, \mu \mathrm{F}\)
(\(\because \) In series group-ing, \(\frac{1}{{{C_{eq}}}} = \frac{1}{{{C_1}}} + \frac{1}{{{C_2}}} + \ldots \ldots + \frac{1}{{{C_n}}}\)