\(A _{0} / A _{ t }\) at time \(2\,min =?\)
\(K =\frac{2.303}{ t } \log \left[\frac{ A _{0}}{ A _{ t }}\right]\)
\(\frac{0 \cdot 693}{ t _{\frac{1}{2}}}=\frac{2 \cdot 303}{2} \log \left(\frac{ A _{0}}{ A _{ t }}\right)\)
Or \(\frac{2.303 \times 0.3010}{0.3010}=\frac{2.303}{2} \log \frac{ A _{0}}{ A _{ t }}\)
\(\log \frac{ A _{0}}{ A _{ t }}=2\)
\(\frac{ A _{0}}{ A _{ t }}=10^{2}=100\)
$2X \rightleftharpoons {X_2}$
${X_2} + Y \to {X_2}Y\,\left( {slow} \right)$
તો પ્રક્રિયાકમ જણાવો.