$H_2O(l) \rightarrow H^+(aq) + OH^-(aq)\,;\,\,\Delta H = 57.32\,kJ$
$H_2(g)+ \frac{1}{2} O_2(g) \rightarrow H_2O(l)\,;\,\, \Delta H=-286.20\,kJ$
\((i)\) \(\quad H_{2} O(\ell) \rightarrow H^{+}(a q .)+O H^{-}(a q .)\)
\(\Delta H_{r}=57.32 \,k J\)
\((ii)\) \(\quad H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(\ell)\)
\(\Delta H_{r}=-286.20 \,k J\)
For reaction \((i)\)
\(\Delta {H_r} = \Delta H_f^o\left( {{H^ + },aq} \right) + \Delta H{\mkern 1mu} _f^o\left( {O{H^ - }.aq} \right) - \Delta H{\mkern 1mu} _f^o\left( {{H_2}O,\ell } \right)\)
\(57.32 - 0 + \Delta H{\mkern 1mu} _f^o\,\left( {O{H^{ - 1}},aq} \right) - \quad \Delta H_f^o\left( {{H_2}O,\ell } \right)\quad \ldots (iii)\)
For reaction \((ii)\)
\(\Delta {H_r} = \Delta H_f^o\left( {{H_2}O,l} \right) + \Delta H_f^o\left( {{H_2}O,\,l} \right) - \Delta H_f^o\left( {{H_2},g} \right) - \frac{1}{2}\Delta H_f^o({O_2},g)\)
\( - 286.20 = \Delta H_f^o\,({H_2}O,l)\)
On replacing this value in equ. \((iii)\) we have
\(57.32 = \Delta H_f^o\left( {O{H^ - },aq} \right) - ( - 286.20)\)
\(\Delta H_f^o = - 286.20 + 57.32\)
\(=-228.88 \,k J\)
$2Ag_{(aq)}^ + + c{d_{(s)}} \to cd_{(aq)}^{2 + } + 2A{g_{(s)}}$