વિશિષ્ટ વાહકતા \(=\) \( 1/\) વિશિષ્ટ અવરોધ \( = \,\,\frac{1}{{18.4}}\)
\({\lambda _{{\text{eq}}{\text{.}}}} = \,\,\frac{{1000 \times \,\,k}}{N}\,\, = \,\,\frac{{1000 \times \,1}}{{18.4\, \times \,1}}\)
\( = \,\,54.347\,\, \approx \,\,\,54.35\)
વિયોજન અંશ \( (\alpha )\,\, = \,\, \frac{{\lambda _{eq.}^C}}{{\lambda _{eq.}^\infty }}\,\, = \,\,\frac{{54.35}}{{384}}\,\, \approx \,\,\,0.14\,\,\, \approx \,\,\,14\% \)
$A$. $\mathrm{Fe}$ $B$. $\mathrm{Mn}$ $C$. $\mathrm{Ni}$ $D$. $\mathrm{Cr}$ $E$. $\mathrm{Cd}$
Choose the correct answer from the options given below:
$Fe_{(aq)}^{3 + } + {e^ - } \to Fe_{(aq)}^{2 + }$ ; ${E^o} = 0.771{\mkern 1mu} \,volts;{\mkern 1mu} $
${\mkern 1mu} {I_{2(g)}} + 2{e^ - } \to 2I_{(aq)}^ - \,;{\mkern 1mu} $ ${E^o} = 0.536{\mkern 1mu} \,volts$
કોષ પક્રિયા $2Fe^{3+}_{(aq)} + 2l^{-}_{(aq)} \rightarrow 2Fe^{2+}_{(aq)} + I_{2(g)}$ માટે $E^o_{cell} = ….$