\(l_{1}+x=\frac{\lambda}{4}=22.7 \ldots \ldots( I )\)
Second resonance,
\(l_{2}+x=\frac{3 \lambda}{4}=70.2 \ldots \ldots\) \((II)\)
Third resonance,
\(l_{3}+x=\frac{5 \lambda}{4} \ldots \ldots\) \((III)\)
From equations \((I)\) and \((II),\)
\(x=\frac{l_{2}-3 l_{1}}{2}\)
\(x=\frac{70.2-68.1}{2}\)
\(x=1.05 cm\)
Now from equations \((II)\) and \((III),\)
\(\frac{l_{3}+x}{l_{1}+x}=5\)
\(\frac{l_{3}+1.05}{68.1+1.05}=5\)
After simplification,
\(l_{3}=117.7 cm\)