Using Coulomb's law,
\(\frac{K \cdot 9 e \cdot q}{x^2}=\frac{K \cdot q \cdot e}{(16-x)^2}\left\{F=\frac{K q_1 q_2}{r^2}\right\}\)
\(\left(\frac{16-x^2}{x}\right)^2=\frac{1}{9}\)
\(\frac{16}{x}-1=\pm \frac{1}{3}\)
\(\Rightarrow \frac{16}{x}=\frac{4}{3} \text { or } \frac{2}{3}\)
\(\Rightarrow x=\frac{3 \times 16}{4} \text { or } \frac{3 \times 16}{2}\)
\(\therefore x=12\,cm \text { or } 24\,cm\)
As the charge \(q\), can be equilibrium present only when its is kept inbetween charges \(+9 e\) and \(+e\), correct answer is \(x=12\,cm\)