\(\therefore\) ઘનતા \(\,\rho = \frac{A}{{\frac{4}{3}\pi {R^3}}}\,\)
\(\therefore\) \(\frac{{{\rho _{{A_1}}}}}{{{\rho _{{A_2}}}}} = \frac{{{A_1}}}{{\frac{4}{3}\pi R_1^3}} \times \frac{{\frac{4}{3}\pi R_2^3}}{{{A_2}}}\,\,\,\, \)
\(= \frac{{{A_1}}}{{{A_2}}} \times \frac{{R_2^3}}{{R_1^3}}\)
પણ \({\text{R}} = {{\text{R}}_{\text{0}}}{{\text{A}}^{\frac{{\text{1}}}{{\text{3}}}}}\) પરથી,
\({{\text{R}}^{\text{3}}} = {R_0}A\,\,\,\)
\(\therefore \,\,\,\frac{{{\rho _{{A_1}}}}}{{{\rho _{{A_2}}}}} = \frac{{{A_1}}}{{{A_2}}} \times \frac{{{A_2}}}{{{A_1}}} = 1:1\)
$A\xrightarrow{\alpha }{{A}_{1}}\xrightarrow{\beta }{{A}_{2}}\xrightarrow{\alpha }{{A}_{3}}\xrightarrow{\gamma }{{A}_{4}}$