No. of nuclei, at \(t=0\) \(4N_0\) \(N_0\)
Half - life \(1\,min\) \(2\,min\)
No. of nuclei after time \(t\) \(N_P\) \(N_Q\)
Let after \(t\) min the number of nuclei of \(P\) and \(Q\) are equal. \(\therefore \quad N_{P}=4 N_{0}\left(\frac{1}{2}\right)^{t / 1}\) and \(N_{Q}=N_{0}\left(\frac{1}{2}\right)^{t / 2}\)
As \(N_{p}=N_{0}\)
\(\therefore \quad 4 N_{0}\left(\frac{1}{2}\right)^{t / 1}=N_{0}\left(\frac{1}{2}\right)^{t / 2}\)
\(\frac{4}{2^{t / 1}}=\frac{1}{2^{t / 2}} \text { or } 4=\frac{2^{t}}{2^{t / 2}}\)
or \(4=2^{t/2}\) or \(2^{2}=2^{t/2}\)
or \(\frac{t}{2}=2 \quad\) or \(t=4 \mathrm{min}\)
After \(4\) minutes, both \(P\) and \(Q\) have equal number of nuclei.
\(\therefore\) Number of nuclei of \(R\)
\({=\left(4 N_{0}-\frac{N_{0}}{4}\right)+\left(N_{0}-\frac{N_{0}}{4}\right)}\)
\({=\frac{15 N_{0}}{4}+\frac{3 N_{0}}{4}=\frac{9 N_{0}}{2}}\)
ન્યુટ્રોનનું દળ $= 1.6725 \times 10^{-27}\;kg$, પ્રોટોનનું દળ $=1.6725 \times 10^{-27} \;kg$, ઈલેક્ટ્રોનનું દળ $=9 \times 10^{-31}\;kg$