\(\sqrt{ X ^{2}+ Y ^{2}-2 \times Y \cos \theta}\)
\(= n \sqrt{ X ^{2}+ Y ^{2}+2 \times Y \cos \theta}\)
Square both sides
\(2 X ^{2}(1-\cos \theta)= n ^{2} \cdot 2 X ^{2}(1+\cos \theta)\)
\(1-\cos \theta= n ^{2}+ n ^{2} \cos \theta\)
\(\cos \theta=\frac{1- n ^{2}}{1+ n ^{2}}\)
\(\theta=\cos ^{-1}\left[\frac{ n ^{2}-1}{- n ^{2}-1}\right]\)