\(E_1=\frac{1}{4 \pi \varepsilon_0}+\frac{q}{\sqrt{x^2+a^2}}(\cos \theta \hat{\imath}+\sin \theta \hat{\jmath})\)
Fectric field at \(p\) due \((+2)\) will be
\(E_2=\frac{1}{4 \pi t_0} \frac{q}{\sqrt{x^2+a^2}}(\cos \hat{\imath}-\sin \theta \hat{\jmath})\)
Total Electric field \(t E=E_1+E_2\)
\(E =\frac{1}{4 \pi \epsilon_0} \frac{2}{\sqrt{x^2+q^2}}\left[2 \cos \theta \hat{\imath}+\sin \theta \hat{\jmath}-\sin \theta e_{ l }\right]\)
\(=\frac{2 q 2 \cos \theta \hat{\imath}}{4 \pi \epsilon_0 \sqrt{x^2+q^2}}\)
Total potential will be \(v=v_1+r_2\)
\(V=\frac{1}{4 \pi t_0} \frac{q}{\sqrt{x^2+a^2}}-\frac{1}{4 \pi t_0} \frac{q}{\sqrt{x^2+a^2}}=0\)