\(F =\left(100-0.5 \times 10^{5} t \right) N\)
Given that, \(F =0\)
\(\left(100-0.5 \times 10^{5} t \right)=0\)
\(t =\frac{100}{0.5 \times 10^{5}}\)
\(=2 \times 10^{-3} sec\)
Calculate the impulse as,
\(I =\int Fdt\)
\(=\int\left(100-0.5 \times 10^{5} t \right) dt\)
\(=\left[100 t -\frac{10^{5}}{2} \frac{ t ^{2}}{2}\right]\)
\(=\left[100\left(2 \times 10^{-3}\right)-\frac{10^{5}}{2} \frac{\left(2 \times 10^{-3}\right)^{2}}{2}\right]\)
\(=0.1 Ns\)