Where \(E_1\) and \(E_2\) are the chemical equivalents and \(m_1\) and \(m_2\) are the masses of copper and silver respectively.
\(E = \frac{{{\rm{Atomic \,weight}}}}{{{\rm{Valency}}}}\).
\({E_1} = \frac{{63.57}}{2} = 31.79\) and \({E_2} = \frac{{107.88}}{1} = 107.88\)
\(\frac{{1\,mg}}{{{m_2}}} = \frac{{31.79}}{{107.88}}\)
\(\Rightarrow \) \({m_2} = \frac{{107.88}}{{31.79}}\,mg = 3.4\,mg\)
$Cu(s) + 2Ag{^+}_{(aq)} \to Cu^{+2}_{(aq)} + 2Ag(s)$
માટે સંતુલન અચળાંક $K_C = 10 \times 10^{15}$ છે, તો $298\, K$ ને $E_{cell}^o$ નું મૂલ્ય કેટલુ થશે?
[${2.303\,\frac{{RT}}{F}}$ એ $298\,K$ $=0.059\,V$]
| $M^{x+}\, (aq)\,/M(s)$ |
$A{u^{3 + }}(aq)/$ $Au(s)$ |
$A{g^ + }(aq)/$ $Ag(s)$ |
$F{e^{3 + }}(aq)/$ $F{e^{2 + }}(aq)$ |
$F{e^{2 + }}(aq)/$ $Fe(s)$ |
| $E^o\,M^{x+}$ $\,/M(V)$ | $1.40$ | $0.80$ | $0.77$ |
$-0.44$
|
જો $E_{Z{n^{2 + }}/Zn}^o = - 0.76\,V,$ હોય તો, ક્યો કેથોડ પ્રતિ ઇલેક્ટ્રોન ફેરફાર માટે $E_{cell}^o$ નું મહત્તમ મૂલ્ય આપશે
$= + 0.34 \,volt, I_2/ 2I- = + 0.53\, volt$