Clearly, from the diagram
\(2 a_{1}=a_{2} \ldots( i )\)
Now, for the ball
\(2 T-\frac{9}{5} m g-\frac{9}{5} m a-(i i)\)
and for the rod, \(m g-T=m a_{2} \ldots\) \((iii)\)
On solving equations \((i)\) and \((iii),\) we get
\(a_{1}=\frac{g}{29} m / s^{2} \uparrow\) (upward)
\(a_{2}=\frac{2 g}{29} m / s ^{2} \downarrow\) (upward)
So, acceleration of ball \(w.r.t\) rod \(=a_{1}+a_{2}=\frac{3 g}{29}\)
Now, displacement of ball \(w.r.t.\) rod when it reaches the upper end of rod is \(1\, m\).
Using equation of motion,
\(s=u t+\frac{1}{2} a t^{2}\)
\(s=0+\frac{1}{2} \times \frac{3 \times 10}{29} t^{2}\)
\(t=\sqrt{\frac{58}{30}}=1.4 s\) (approx)