\(y=A \sin (k x-\omega t)\)
where
\(A=\) Amplitude of the wave
\(k=\) angular wave number
\(\omega=\)angular frequency of the wave
Given: \(A=1 \mathrm{m}, \lambda=2 \pi \mathrm{m}, \quad v=\frac{1}{\pi} \mathrm{Hz}\)
As \(\quad k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{2 \pi}=1\)
\(\omega=2 \pi v=2 \pi \times \frac{1}{\pi}=2\)
\(\therefore\) The equation of the given wave is
\(y=1 \sin (1 x-2 t)=\sin (x-2 t)\)
$ {z_1} = A\sin (kx - \omega \,t) $ , $ {z_2} = A\sin (kx + \omega \,t) $ , $ {z_3} = A\sin (ky - \omega \,t) $ .