
\(=\frac{1}{2 \ell} \sqrt{\frac{\mathrm{T}_{\mathrm{AB}}}{\mathrm{m}}}\)
Frequency of \(2\) nd harmonic of \(\mathrm{CD}\)
\(=\frac{1}{\ell} \sqrt{\frac{\mathrm{T}_{\mathrm{CD}}}{\mathrm{m}}}\)
Given that the two frequencies are equal.
\(\therefore \frac{1}{2 \ell} \sqrt{\frac{\mathrm{T}_{\mathrm{AB}}}{\mathrm{m}}}=\frac{1}{\ell} \sqrt{\frac{\mathrm{T}_{\mathrm{CD}}}{\mathrm{m}}}\)
\(\Rightarrow \frac{\mathrm{T}_{\mathrm{AB}}}{4}=\mathrm{T}_{\mathrm{CD}} \Rightarrow \mathrm{T}_{\mathrm{AB}}=4 \mathrm{T}_{\mathrm{CD}}\) \(...(i)\)
For rotational equilibrium of massless rod, taking torque about point \(O.\)
\(\mathrm{T}_{\mathrm{AB}} \times \mathrm{x}=\mathrm{T}_{\mathrm{CD}}(\mathrm{L}-\mathrm{x})\) \(...(ii)\)
For translational equilibrium,
\(\mathrm{T}_{\mathrm{AB}}+\mathrm{T}_{\mathrm{CD}}=\mathrm{mg}\) \(..(iii)\)
On solving, \((i)\) \(\&(iii)\) we get, \(\mathrm{T}_{\mathrm{CD}}-\frac{\mathrm{mg}}{5}\)
\(\therefore \mathrm{T}_{\mathrm{AB}}=\frac{4 \mathrm{mg}}{5}\)
Substituting these values in \((ii)\) we get
\(\frac{4 m g}{5} \times x=\frac{m g}{5}(L-x)\)
\(\Rightarrow 4 \mathrm{x}=\mathrm{L}-\mathrm{x} \Rightarrow \mathrm{x}=\frac{\mathrm{L}}{5}\)
(ગુણકારનો અચળાંક $1$ લો)