\(\frac{1}{2} \mathrm{Li}^{2}=\frac{\mathrm{q}^{2}}{2 \mathrm{C}}\)
where \(q\) is the charge on the capacitor when energy stored equally between the electric and magnetic fields.
\(\therefore \mathrm{q}^{2}=\mathrm{LCi}^{2}\) ........\((i)\)
Now maximum charge on the capacitor is \(Q\)
when maximum current \(i_{0}\) flows through the \(L-C\) circuit.
So, maximum energy stored in the electric and magnetic fields are
\(\left(\mathrm{U}_{\mathrm{E}}\right)_{\max }=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}\) and \(\left(\mathrm{U}_{\mathrm{B}}\right)_{\max }=\frac{1}{2} \mathrm{Li}_{0}^{2}\)
Given \(\left(\mathrm{U}_{\mathrm{B}}\right)=\frac{1}{2}\left(\mathrm{U}_{\mathrm{E}}\right)_{\max }\)
\(\frac{1}{2} \mathrm{Li}^{2}=\frac{1}{2} \frac{\mathrm{Q}^{2}}{2 \mathrm{C}}=\frac{\mathrm{Q}^{2}}{4 \mathrm{C}}\)
\(\frac{{{{\rm{q}}^2}}}{{2{\rm{C}}}} = \frac{{{{\rm{Q}}^2}}}{{4{\rm{C}}}}\) [from equation \((i)\)]
\(\therefore \) \(\mathrm{q}^{2}=\frac{\mathrm{Q}^{2}}{2}\)
\(\mathrm{q}=\frac{\mathrm{Q}}{\sqrt{2}}\)
જોડકાં જોડો.
પ્રવાહ $ r.m.s. $ મૂલ્ય
(1)${x_0 }\sin \omega \,t$ (i)$ x_0$
(2)${x_0}\sin \omega \,t\cos \omega \,t$ (ii)$\frac{{{x_0}}}{{\sqrt 2 }}$
(3)${x_0}\sin \omega \,t + {x_0}\cos \omega \,t$ (iii) $\frac{{{x_0}}}{{(2\sqrt 2 )}}$