\(F_{P S} \propto Q^2\)
\(F_{P S}=16 N\)
Now If \(\mathrm{P} \& \mathrm{R}\) are brought in contact then
\(Image\)
Now If \(\mathrm{S} \& \mathrm{R}\) are brought in contact then
\(Image\)
New force between \(P \& S\) is :
\(\mathrm{F}_{\mathrm{PS}} \propto \frac{\mathrm{Q}}{2} \times \frac{3 \mathrm{Q}}{4}\)
\(\mathrm{~F}_{\mathrm{PS}} \propto \frac{3 \mathrm{Q}^2}{8}=\frac{3}{8} \times 16=6\)