જ્યાં $e,\,{\varepsilon _0},\,h$ અને $c$ અનુક્રમે વિદ્યુતભાર, પરમિટિવિટી, પ્લાન્ક નો અચળાંક અને પ્રકાશનો વેગ છે.
$\therefore $$\left[ {\frac{{{e^2}}}{{4\pi { \in _0}hc}}} \right] = \left[ {\frac{{{A^2}{T^2}}}{{{M^{ - 1}}{L^{ - 3}}{T^4}{A^2} \times M{L^2}{T^{ - 1}} \times L{T^{ - 1}}}}} \right]$
$ = [{M^0}{L^0}{T^0}]$
લીસ્ટ $I$ (ભૌતિક રાશી) | લીસ્ટ $II$ (પારિમાણિક સૂત્ર) |
$(A)$ દબાણ પ્રચલન | $(I)$ $\left[ M ^0 L ^2 T ^{-2}\right]$ |
$(B)$ ઊર્જા-ઘનતા | $(II)$ $\left[ M ^1 L ^{-1} T ^{-2}\right]$ |
$(C)$ વિદ્યુતક્ષેત્ર | $(III)$ $\left[ M ^1 L ^{-2} T ^{-2}\right]$ |
$(D)$ ગુપ્ત ઉષ્મા | $(IV)$ $\left[ M ^1 L ^1 T ^{-3} A ^{-1}\right]$ |